Therefore, non-extreme points on the boundary can be
thought of as representing the mean waiting times
performance of priority scheduling rules with a "mixture" of
fixed priority scheduling and escalating priority
scheduling. We now formally define this new rule of

scheduling:

DEFINITION. In multiclass queueing systems, a scheduling
rule is called mixed priority scheduling of
escalating priority and fixed priority, or, MEFP
scheduling in short, if it separates the arrival
classes into several priority levels such that
fixed priority scheduling 1is applied between
different levels, and escalating priority

scheduling is applied within levels.

This scheduling mechanism is shown in Figure 2.4.
Operationally, 1let the n arriving classes be grouped into m
levels, eacn level i consisting of nj priority classes. For
each priority class (i,j), there is a control parameter 5

associated with it. Jobs within the 1level i compete for

service with priorities increasing with rate ay When the

jl
server becomes free, it searches from the top level
downwards to find the first level with at least one nonempty

queue. It then select the job within this 1level with the

highest priority index for service.

62

Figure 2.4 MEFP Scheduling Mechanism

Notice that in this scheduling rule, within each level
i, we have ni—l degrees of freedom for controlling the
parameters {aij }« Thus, the total degrees of freedom for

controlling this scheduling is n-m.

Kleinrock first studied this 1limiting situation of
escalating priority scheduling in [KLEI66] and called it
Strict and Lag Priority Mixture (SLPM). He derived mean
waiting times behavior for M/M/1 queueing systems under SLPM
scheduling. We note that his results for MEFP (SLPM)

scheduling are also true for M/G/1 queueing systems for the

reasons given in Section 1.3 that his results of escalating
priority scheduling can be extended from M/M/1 queueing

systems to M/G/l systems.

We now summarize the meanings of the boundary points of
the feasible performance space of mean waiting times under

escalating priority scheduling:

(a) Extreme points on the boundary represent mean
waiting times of priority classes under fixed priority

scneduling.

(b) Non-extreme points on the boundary represent mean

waiting times of priority classes under MEFP scheduling.

Before we conclude this chapter, we remark that since
boundary points are limiting behaviors of escalating
priority scheduling, we can modify Theorem 2.4 to obtain a
set of values for escalating priority scheduling that can
approximate the performance of fixed priority and MEFP

scheduling. This is as follows:

Given a set of mean waiting times performance of either
fixed priority or MEFP scheduling, they correspond to a
boundary point of the space defined by (1.3.2) and (2.1.4).
wnen we solve the quadratic equation aix2 + bix * oy = 0
following Theorem 2.4, instead of having a unique positive

root, we will have a unique non-negative root. In this
case, (2.2.10) can not be directly applied to determine the

values of { o;} because the denominator of the expression in

64

E B et saninsi o
'

bt

(2.2.10) is zero. However, if we recall from (2.2.11) that
£, is defined as the ratio °i+1/°i' then r ;=0 means that the

value o,;/a must approach infinity. Thus, in order to

i+l
obtain a set of parameters such that ai/ai+l*°, we can
replace ri=0 by r;=¢ where e is a very small positive
quantity so that oy /°i+1 =1/¢ will be large. Using this
substitution, we can then obtain a set of positive r;'s and
therefore (2.2.10) of Theorem 2.4 can be used to obtain a
set of values { ai}. Therefore, using this set of values
for the control parameters in escalating priority
scheduling, fixed priority and MEFP schedulings can be

approximated.

CHAPTER 3

OPTIMIZATION OF ESCALATING PRIORITY SCHEDULING

3.0 Introduction

In Chapter 2, we showed that escalating priority
scheduling can cover the spectrum of scheduling from FCFS
scheduling to fixed priority scheduling by adjusting the
control parameters { ai} and that the feasible performance
space of the E[wi]'s is defined by (1.3.2) and (2.2.1). In
this chapter, we present algorithms for determining the
values of {E[Wi]} to optimize various cost functions. We
then can wuse the algorithm presented in Theorem 2.4 to
obtain the wvalues of the control parameters {o;} in
escalating priority scheduling to give the values of mean

waiting times determined from these optimizing algorithms.

We will develop optimization algorithms for two general
cost objective functions. Each of these general functions
has several special cases of interest. Two new variables,
si and c,, are used in these general functions. S, is a
constant for class i and its meaning differs for each of the
various cases. c; represents the appropriate cost of each
job in class i for the objective function being used. The
two general objective functions are the following:

n

. .) m
(a) Minimize kilkkck(E[Wk]'Sk) ' (m>1)

66

e —

-s); <n}.
and (b) Minimize max {xkck(E[wk] sk), 1<k<n}

We will now present some of the interesting special

cases of the general objective functions.

Case 1. For objective function (a) with m=1 and si=-E[Si],

we have:
n
Minimize T

B Sk (B LR IHE LS,

3
where c; is the cost of the time spent in the system per
unit time for each job from «class 1. This objective
function minimizes the expected total cost of the average

time jobs spend in the system (waiting plus service time).

Case 2. For the objective function (a) with m=1 and Si=0
for all i, we have:
n
Minimize E 1kckE[Wk],
k=1
where c; is the cost of waiting per unit time for each job
from class 1. This objective function minimizes the

expected total cost of the average time jobs spend waiting

for service.

Case 3. For the objective function (a) with m=2 and

si=-E[Si], we have:

n
. . . 2
Minimize killkck(E[Wk]+E[Sk]) '

67

where c; is the cost of the time spend in the system per
unit time squared for each job from class i. This objective
function minimizes the expected total cost of the square of

the average time jobs spend in the system.

Case 4. For the objective function (a)with m=2 and s; =0 for

all i, we have:
n
Minimize =T

2
c E[W 17,
=g KK K

M
where ci is the cost of waiting per unit time squared for
each job from class i. This objective function minimizes

the expected total cost of the square of the average time

jobs spend waiting.

Case 5. For the objective function (b), if we interpret s,
as the slack time allowed for 3jobs from class i, then
E[Wi]-s-l is the expected lateness of a job, and c, is the
cost per unit time for each job late in class i. Thus this
objective function minimizes the expected lateness cost of
the average lateness of all jobs in the class having the

maximum expected lateness cost.

From optimization theory, optimal solution(s) exist for
any closed and bounded feasible solution domain. Since the
feasible performance space of mean waiting times of
escalating priority scheduling is an open space defined by
(1.3.2) and (2.2.1), we will add the boundary points of this
space to the solution domain to guarantee that optimal

solution(s) exist. Thus, for our optimization problems, the

68

TV T T

constraints are (1.3.2) and (2.1.4). For these problems, if

the optimal solution(s) obtained falls on a boundary, we can
use the modification of Theorem 2.4 described in Section 2.3
to obtain a set of { ai} that will approximate the optimal

mean waiting times.

In the following sections, Section 3.1 discusses
optimization of (a) with m=1 and (b) and Section 3.2
discusses the optimization of (a) with m>1. 1In Section 3.3,
we present a series of examples to illustrate the

optimization techniques described in Sections 3.1 and 3.2. 1

3.1 Optimization with Linear Cost Functions

In this section, we discuss optimizing the following

objective functions:

n
(3lel) Minimize g xkpk(E[wk]—sk)
k=1
and
(3.1.2) Minimize max {Mey(EIW]-s)); 1<k<n}
subject to
(1.3.2) PiEIW,] + c,E[Wy] + ... + p E[W] = oW,
and
{2.1.4) VIEN I p E[W,] > (1-p)(£ P)W/(1- T p.).
KEX - . ° keI K Y

We first aiscuss (3.1.1). For this objective function,

we have a bona fide linear programming problem. Thus, an

optimal solution can be obtained by the simplex method.

From the theory of linear programming, if a single optimal

69

e o o

solution exists, it must occur at an extreme point. When

multiple optimal solutions exist, they must be convex

combinations of optimal extreme points.

A solution to this optimization problem can be obtained
directly without wusing the simplex method because we know
that extreme points represent fixed priority scheduling.
We recall from Theorem 1.4 that for fixed priority
scheduling, to minimize

n

(L3 7} E e E[W
k=1 k7 k

) o
the optimal ordering of priority classes follows the
descending order of i€y If for some i and j, Wiy = “jcj'

then multiple optimal solutions exist and the ordering of

these two classes is unimportant.

Now, since the objective function (3.1.1) <can be
rewritten as

n

Y

A C. (E[W,]-s.)
EE Tk kK ool

kkcks[w

e
W eas

k=1 k=1
optimizing (3.1.1) is equivalent to optimizing (1.3.7) when
the two problems have the same solution domain. This is
because the last summation term is a constant independent of

the E[Wi]'s.

Even though the solution space for optimizing (3.1.1)
contains points other than the extreme points that
correspond to fixed priority scheduling, we can temporarily

restrict ourselve to this set of extreme points to obtain

70

— e —— --—--!--!-Ill'IlI!!I---.H.-.--l-llllll!!!!.!

initial optimal solution(s). Under this condition, we can
use Theorem 1.4 to obtain initial optimal solution(s) and
then take convex combinations of all the 1initial optimal
solution(s) to obtain multiple optimal solutions. A summary

of the above discussion is the following:

To optimize (3.1.1), first order the p.c.'s in

descending sequence.

Case (a): If no two uici's are equal, then the optimal
solution to (3.1.1) is unique. Denoting the class indices
for the descending sequence of WiC,; as L 2%y seep ', then

from Theorem 1.3, we have
(3.1.3) E[Wi']* = (l-p) W/ (l—ci_lc) (1_°i|)l

Case (b): If some of the uici's are equal, then for all
non-ascending orderings of W c;, we first use (3.1.3) to
obtain all the optimal solutions within the domain of fixed
priority scheduling. Then, the solutions to (3.1.1) are the
set of all convex combinations of the initial optimal

solutions.

Next, we discuss optimization of (3.1.2) subject to

(le3:2) and (2.L.4) .

To solve this, we employ the following argument: Given
an objective function f(x) with solution domain X, instead

of searching directly through the whole domain of X for the

minimum, we decompose X into several subregions and first

ik

— , ——

determine the minimum within each subregion. Then, the
optimal solution to the original pr?blem is the solution of
the subgpace that has the smallest value for the objective
function among the minimum values found for all the
subspaces. Mathematically, we have:
(3.1:4) min £(x) = min min £ (x) TE b= X
x€X AET xEXi i€
Now, for our optimization problem (3.1.2), we decompose
our solution space R defined by (1.3.2) and (2.1.4) into n
subregions Rl, R2, e Rn such that each region R. |is

i

defined by (1.3.2), (2.1.4) and the following set of n-1

constraints:

(3.1.5) MEG(EIW I=s) > N c (E[W,]-s.) for all k#i.

We note that for each i, (3.1.5) is a different set of
linear 1inequalities and it means that for each point W =
(E[wl],E[WZJ,...,E[wn]) in Rj» if we consider the values
xlcl(E[Wl]—sl), Ay & (E[Wyl=85), ..y ln cn(E[wn]-sn), then
xici(E[wil-si) is the largest among them. That is, for each

NERiI
max {"kck(E[wk]'sk);likin} = \ici(E[wi]—si).

Now, since for each point W in R, if we consider the values
E - - -
xlcl([Wl] sl), x2c2(E[W2] 52)""’ kncn(E[wn] s) then one
of them must be the largest. 1If, say, xjc.(E[W.]-s.) is the
J J J

largest among the above, this means that the point W must

72

lie in region Rj' Thus, each point in R must lie in one of

the regions Ri' This proves that
R]_U R2LJ acir Rn = R.

We now define f(W) = max {A ¢, (E[W]-s.); 1<k<n}.

Then our minimization problem (3.1.2) becomes mén f(W).
WER
From (3.1.4), this problem is then equivalent to min min

1<i<n WERi
f(W), which is

(3.1.6) min min max {r, _c, (E[W_]-s,); 1<k<n}.
I=i=n WERi 4 K A

Since for each point W within region R;, we have
max {A.Cy (E[W]1-5,);1<k<n} = My (E[W;]-s;),
substituting this into (3.1.6), we obtain f

min min).c.(E[(W.]-s.).
l<isn R, X o

The above shows that we can solve (3.1.2) by the

following two-step procedure:
Step (l): For each i, 1l<i<n, solve the following:
(3.1.7) Minimize) .c.(E[W.]-s.)

I Y X

subject to (1.3.2); (2:1.4) and (3.1:5),

73

e I Y

Step (2): Select, among all the optimal solutions obtained
from step (1), the one with the minimum objective value.
This solution is then the optimal solution to the original

problem (3.1.2).

We remark that 1in the step (1) above, n linear
programming problems need to be solved, each one using a
subregion of the original solution space defined by the
constraint sets (1.3.2); (2.1.4) ana (3:1.5). For each
different i, (3.1.5) defines a different region Rj. Lt is
possible that under the partition used, some subregions may
be empty so that feasible solutions for these problems do
not exist. However, since at least one of the regions Ry is

always nonempty, a solution to our original problem exist.

Before we conclude this section, we point out the
following interesting observation: For the optimization of
(3.1.2), if the optimal solution falls in the interior of

the solution domain, then the following relation must hold:
(3158l Alcl(E[wl]—sl)=x2c2(E[w2]—sz)=...=xncn(E[Wn]—sn).
This is because if W* = (E[Wl]*,E[Wzl*,...,E[Wn]*) were

an optimal solution but did not satisfy (3.1.8), then if we

rename the class indices as 1', 2', ..., n' such that

(3.1.9))\l'cl'(E[Wl']-sl') Z_ h2|c2|(E[w2|]_52l)

3 s

| v

)\nlcnl (E[wnll-snl) ’

74

then at least one of the above ">" must have strictly
greater relation ">". Let class i' and i+l' be the smallest

indices such that
)\incil (E[Wi-]-si.) >)\i+l'ci+l' (E[Wi+l.]-si+l.).
That is, we have

xl,cl,(E[Wl,]—sl,) = xz,cz,(E[wz,]—sz,)

s e =

l'ci' (E[Will-sil)'

Then, from the conservation law of mean waiting times,
it 1is possible to further reduce the E[Wk,]'s, 1<k<i, by
increasing E[Wk,], i+1<k<n so that kl.cl.(E[Wl.]—sl.) will
be decreased. This contradicts our assumption that W* is

optimal.

We note that the above argument does not apply to the
boundary points because if we try to reduce the values of
some of the B[wjﬂ's, then they may be forced off the

boundary and become infeasible.

The above shows that if we temporarily neglect the
boundary constraints (2.1.4), then (3.1.8) can be used to
obtain a solution to the relaxed problem (3.1.2) with only
the constraint (1.3.2). Thus, for our original problem,
instead of following the aforementioned procedure of solving
n linear programming problems, we can first solve (3.1.8)
and (1.3.2) to obtain a set of {E[Wi]}, and then test to see

if the constraint set (2.1.4) is satisfied. If the solution

S

does satisfy the constraint set (2.1.4), then it 1is an
optimal solution to our original problem. However, if some
of the constraints in (2.1.4) are violated, then we must use

the original procedure to obtain a solution.

We now return to the problem of solving (3.1.8) and
(1.3.2) Eor [E[wi]}. First, let the common value of (3.1.8)

be t, so that
E[wi] =s; + t / kici.

Substitute this into (1.3.2), we have

n —
T p, (8, + t/N,) = pW,
=1 k "k kk
5 n n
Or ; B SENEpIWE =1 S s ise ISR S A e
k=1 K ¥ el 5K
Thus, we have
o n

(3.1.10) E[wi] =s; + (pw—kilpksk)/(kicikill/ukck).

This is then the solution to the relaxed problem
(3.1.2) with constraint (1.3.2) only. If it also satisfies
(2.1.4), then it 1is the optimal solution to (3.1.2).
However, if it fails to satisfy all the inequalities in

(2.1.4), then we must use our original solution procedure.

We now illustrate this with a two-class priority

queueing example.

76

R L REw]+gEMW,]) =P W

E (w,]

w
Qi
Ll N LEw,]

o

Figure 3.1 Minimize max {Akck(E[wk]—sk); k=1,2}

In Figure 3.1, our solution space for optimization is
the 1line segment 912921' Using (3.1.10) and the given
positive values for Sy and Sy, We have:

W= p1S) = Py,

ElW;} = 8; + 1

klcl(c ;Y (o)

il e Ly

And, =
PW=1p.S, =p,S

171" Pa®a

E[Wy] = s; + 1 T
xzcz(+
By Para

Thus, if W = (E[W;], E[W,]) lies in between Qj; and
QZl' then it 1is an optimal solution. However, if it does
not, then we need to use the two-step procedure that we

described earlier.

In this example, the point S is defined as (sl, 52)'
It is interesting to note the following behavior of the

objective function: At the point S, E[W;] = s; and E[W,] =

S,r SO that the objective value is 0. At point W, the
objective function assumes some positive value, say b, so
that

max {)\ka(B[W]J-sk); k=1,2} = -b,

Thus, the contour of all points satisfying the above
equation 1is the two "half lines" passing through the point

W that are parallel to the two axes.

3.2 Optimization with Nonlinear Cost Functions

In this section, we discuss priority scheduling
subject to non-linear cost of delay. Our problem is the

following:

n

N m
(3.2.1) Minimize kilxkc]<(B[W}J S,) (m>1)
subject to
(1.3.2) plE[wl] 3 sz[Wzl + ... + an[Wn] = pW,
and
(2.1.4) YICN £ o E[W,] > (l-p) (£ pp)W/ (1= Z py).

k€T = = keI X ker K

First we discuss the case when m=2. With a quadratic
objective function and linear constraints, we have a

quadratic programming problem.

78

This quadratic constrained optimization problem can be
solved based on a theorem developed by Kuhn and Tucker
[KUHN51], which we will now state in the following. (The
proof of this theorem can be found in most nonlinear

programming books.)

THEOREM 3.1. Consider the problem
maximize Zo = f (Zl, Zz, ey YA

subject to

0 for i 1,2,...,4,

(1} 9 88q0 Bor venn B

(2) nj(Zl, 22, aaelp Zn) > 0-for 3 X2 ey Wy

wheEe - ‘s on . Bee ' are all continuously
differentiable functions. Then,

Z* = (Zl' Zor eeeq 2 can be an optimal

)
solution to the non-linear optimization problem
only if there exists £ + m multipliers

X1r KXoy eees Xy and Yir Y25 svse ¥y such

that the following conditions are all satisfied:

£ £ 39 m 3h.
(3.2.2) —az—<z*)- £ x, -5==(2%) - Ty, '_'laz =0 (l<k<n)
32y i=1 k j=1 1 X
€32, 3) g, (2% =0 for 1 = 1, 2, couph,
(3.2.4) nj (z2*) > 0 EOL 3 = Ly 25 vy My
(3.2.5) Y5 hy (%) =0 for § =1, 2, ..., m,
(3.2.6) yj <0 i7ag 4 R R SR

79

Furthermore, these <conditions (called

Tucker conditions) are also sufficient i

following are satisfied:

(3.2.7} f(Z) is concave,
(3.2.38) gi(Z) is linear, for all i =1, 2, (.., 4.,
(3.2.9) hj(Z) is conecave, forE all] = 1, 2, .ecse M.

In order to apply this theorem, we use the following

matrix notations:
Let A = (Aij) be a (Zn—2) X n matrix defined by

if 0 < (i mod 29) < 2971,

A

(3.2.10) Aij =

{ :
0 if 2971 ¢ (i moa 27) < 27.

A

where the notation "x mod y" 1is wused to represent
remainder of x divided by y.
Let b = (by, by, ..., b 1 2) be defined by
2 e

n n
(3.2.11) bi = (1 - p) W (X Bl 7 (L =T &,
=1

e
k=1 1K

also, denote W (E[wl], E[WZ], wewy BlWRL)Y , and

B = Uppwbgs sesnby)

Then, if we let

(3.2,12) g(W) = p° W=~ p W, and

Kuhn-

f the

the

B R N W PRy ="

(3.2.13) h(W) =AW - b,

we see that constraints (1.3.2) and (2.1.4) can be written

as g(W) = U and h(W) > U respectively.

a

Now,

in order to change our minimization problem to

maximization problem, we define f(W) to be the negative of

our objective function. That is, we let

i 2
Eed)y = = éhﬁ<% (ElWy] = sy)
If we denote
S = (Sy1s Sy e sn)T,

and let D = (Dij) be an n x n matrix defined by
Dij = G 1B =
0 if i #7.
then, f£(W) can be written as

(3.2.14) f(W) =s' Ds - 2s DW + W DH.

From the definitions of the functions f, g, h above, it
is easily seen that conditions (3.2.7) through (3.2.9) are
satisfied. Thus, the Kuhn-Tucker conditions (3.2.2) through

(3.2.6) become sufficient in providing optimal solutions.

We will now derive these Kuhn-Tucker conditions for our
problem and then see how the solution of this set of

relations can be obtained by applying a modified linear

81

programming method using the artificial variable technique.

First, substitute (3.2.12) through (3.2.14) into

(3.2.2), we have:

i & x
25 D+2W D~xp -3 &=0.

Let x = x; - Xp be the difference of two non-negative
variables and let y' = -y, substitut.ng into the above
equation and taking the transpose, keeping in mind that gT =

D, we obtain

2DW-px +ox2+ATx' = 20D s.
Denote x' = (xl, X,), then in matrix notation, the above
equation becomes E
T ' ' .
(3.2.15) (2D -pyp A") (W I x'"1ly") =20Ds.

Next, substitute (3.2.12) into (3.2.3), we have

(3.2.16) Tw= oW.

Then, substitute (3.2.13) into (3.2.4), we obtain

(3.2.17) A W > b.

Now, if we let T = h(W) = A W - b be non-negative slack

variables for the inequalities (3.2.17), then (3.2.5)

becomes

82

or, equivalently,
(3.2.18) y3 Tj = §, for § = 1, 2, ..., 2%-2.

We recall that in our problem of determining optimal
W = (E[wlj, E[wzl, «ses E[WN]), each E[Wi] is required to be
positive. Also, x' is defined to be non-negative. By the
definition of y' ana (3.2.6), y' 1is also non-negative.

Thus, we have
(3.2.19) W, 2", ¥'» T 2 0.

Therefore, the Kuhn-Tucker conditions for our problem

can be summarized as (3.2.15) through (3.2.19).

To solve the simultaneous equations and 1inequalities
(3.2.15) through (3.2.19), we apply the artificial variables
technique, and 1introduce to each 1linear -equality and
"greater or equal" constraints a non-negative artificial
variable to formulate a pseudo minimization problem with the
sum of introduced artificial variables as the objective
function. According to this technique, if the minimum value
of this pseudo objective function is zero (which indicates
that all the introduced artificial variable have vanished),
then the original problem 1is feasible, and an initial

optimal solution can be directly obtained from the solution

of the pseudo optimization problem (c.f., any standard
linear programming book).

For our problem of seeking an optimal solution to
(3.2.14) with constraints (3.2.15) through (3.2.19), we will

now temporarily neglect (3.2.18) and (3.2.19), and add
n+1l+ (2"-2)=2"+n-1

artificial variables R; through R " to constraints
2 4+n-
(3.2.15), (3.2.16) and (3.2.17) and obtain a minimization

problem in the following:
2% n-1
Minimize z
k=1 "x

subject to (3.2.18), (3.2.19) and

(3.2.20) (2D1-p,p1AT1011,0,0) (WIx'ly'ITIR) = 2Ds,
(3.2.21) (oT1 0,01 01010,I,0) (WIx'Iy'ITIR) = pW,
(3.2.22) (Al 0,0101-1190,0,I) (Wix']y'ITIR) = b.

Except for the constraint (3.2.18), the constraints are
linear. The simplex method can be wused with a slight
modification to solve this problem. First, temporarily
neglect (3.2.18) and formulate a linear programming problem.
Then, we use the simplex method in solving this problem with
the additional requirement that for every iteration of
generating a new basic feasible solution, we check (3.2.18)
to be sure that only one of the two variables yj' and T. are

a basic variable. That is, if one of the two variables are
already a basic variable, then the other variable cannot be

the variable entering the basis unless the other variable is

84

PRI € e 45 T

- .

the wvariable 1leaving the basis. This guarantees that the

solution obtained satisfies (3.2.18).

we have now completely solved our quadratic
optimization problem. It should be noted, however, that the
above solution procedure 1involves solving a programm.ng
problem with a large number of variables, in particular,
when the number of priority classes is large. An
alternative solution method is described below that may be
simpler than wusing the above algorithm. This solution
method is particularly useful when the optimal solution lies

in the interior of the feasible performance space.

In the following, we discuss the objective function
(3.2.1) in general jm not restricted to being equal to two),
and describe an iterative method for solving the
optimization of (3.2.1). This iterative method can be

simply stated as follows:

First, solve the problem of optimization with some of

the constraints relaxed (temporarily neglected). After a
solution to the relaxed problem is obtained, check to
determine ik this solution satisfies the neglected
constraints. If all the constraints are satisfied, then
this 1is the optimal solution to the original problem.
However, if some of the constraints are violated, then the

violated constraints are added and the problem is solved

again. This process is repeated until a solution satisfying

all constraints is found.

To solve our optimization problem (3.2.1), we first
relax all the inequality constraint (2.1.4) and only keep
the constraint (AL~ 35 0 2l This relaxed constraint
optimization problem can be solved wusing Lagrange's
multiplier method.

n

m =
Xkck(E[Wk]-sk) -L(kilpkE[wk]—pw).

Let

=2
|

n
=

k=1

Lagrange's necessary condition for optimality is:

L

(e%

& ol _

(3.2.23)) 0 , and

(3.2.24y —=Sk_ _ g . f5r 1zken.
aE[Wk

Now, Eor each, i, 1= 1L, 2, wsey, N,

m=1

aL/aE[wk] = m\,c; (E[W;]~s,) - 40, .
setting them equal to 0, we obtain
3.2.25 E[=5, + Bt} e
(3¢2.25) LT (2/ m uicy) . (1L£i<n)

The first Lagrange condition 3L/34 = 0 requires

n
(1<3:2) T p,E[W,.] = pW.
Y=l k k

Substitute (3.2.25) into the above equation, we get

1
n ———= n —
L ,m=1 . m=1 -

(Sl =) { 2 pa J @)) = oW.
ksl kk m k=l k kk

Thus, 1 1
L,m=-1 - e y e m~-1
(=) = (pW= Z 0,8)/ (2 o/ ())
m Seh k7k k=1 k k 'k

86

